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Abstract. We propose the fundamental and two-dimensional representation of the Lorentz groups
on a (3+1)-dimensional hypercubic lattice, from which representations of higher dimensions can
be constructed. For the unitary representation of the discrete translation group we use the kernel of
the Fourier transform. From the Dirac representation of the Lorentz group (including reflections)
we derive in a natural way the wave equation on the lattice for spnphrticles. Finally, the
induced representation of the discrete inhomogeneous Lorentz group is constructed by standard
methods and its connection with the continuous case is discussed.

1. Introduction

The hypothesis of a discrete space and time has attracted the attention of physicists for different
reasons [1, 3]:

(i) As a mathematical tool in order to remove the infinities in quantum field theories with the
help of a cut-off in momentum space or, equivalently, a lattice for spacetime coordinates
[7]. This model is similar to solid state physics where quantum fields are defined on grid
points of a periodic crystal.

(i) Asamorerealistic interpretation of lattice gauge theories, in which the spacetime variables
are constrained to discrete values due to some underlying structure resulting out of the
relations among fundamental processes, as Penrose, Finkelstein and Weizsaecker have
proposed [3].

In this paper we address ourselves to an important problem of symmetries in lattice
theories. In particular, we study the consequences of restricting the continuous spacetime
variables to a discrete Minkowski space for the translations, rotations and Lorentz
transformations. We discuss the possibility of maintaining representation theory for these
groups on the lattice.

Our paper is based on the standard theory of induced representations of theéRgriaopr
restricted to discrete variables [13]. In momentum space there are three ways to construct
induced representations: Mackey, Wigner and covariant states [10], based on the existence of
aclosed subgroup of a Lie group. In our case the closed subgroup is the cubic group with respect
to Lorentz transformations on the lattice. We have the advantage that the representations of
the rotation group in two and three dimensions remain irreducible when restricted to the cubic
group. Therefore, all the arguments for the discrete case can be taken unchanged from the
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continuous case. So we introduce the Poiacmmetry on the lattice that was considered
broken by many authors [12].

In a preliminary version [15] of this work we stressed the connection between
Klein—Gordon, Dirac and Proca equations in discrete/continuous momentum and discrete space
via a Fourier transform.

In this paper we emphasize representation theory of the discrete translation, Lorentz and
Poincaé group in such a way that the wave equation for spi2-ftarticles on the lattice
emerges in a natural way from the Dirac representation of the Lorentz group.

In section 2 we describe an algorithm to construct all integral transformations of the
complete Lorentz group based on the generators of some Coxeter group and calculate the two-
dimensional (2D) representations of this group that can be generalized to higher dimensional
irreducible representations.

In section 3 we review two unitary irreducible representations of the discrete translation
group and the cyclic group and use these representations as the kernel of two Fourier transforms
on the lattice that have become very helpful throughout the literature.

In section 4 we review the Dirac representations of the Lorentz group including space
inversion and construct the Dirac wave equation in momentum space as projection operators
that reduce the covariant states of the representation to the irreducible components.

Insection 5we apply the Fourier transforms of section 3to the Dirac equation in momentum
space and obtain a difference equation for the Dirac and Klein—Gordon fields on the lattice.

In section 6 we construct the induced representation of the Péigcaup on the lattice
using the Mackey—Wigner approach and discuss the irreducibility and orbit conditions of this
representation.

2. Fundamental and spin representation of the Lorentz group on the lattice

An integral Lorentz transformation belongs@d. (4, Z) and leaves invariant the bilinear form
d? = x3 — x? — x5 — x5. (1)

According to Coxeter [1, p 47] integral Lorentz transformations (including reflections)
are obtained by combining the operations of permuting the spatial coordinates x3 and
changing the signs of any of the coordinatgsry, x2, x3 together with addingg —x1 — x> — x3
to each of the four coordinates of a point.

These operations can be described geometrically by Weyl reflections on the planes
perpendicular to the vectors

ay=-e;— e az = ez — e3 o3 = e3 as = —(eg+eyrteptes)

where{eg, e1, e, e3,} is an orthonormal basis.
In matrix form these reflections are

1 0 0O 1 0 0O
S, = 0 010 S, = 01 00
01 00 0 0 01
0 0 01 0 010
1 00 O 2 1 1 1
S3— 010 O S4—(_1 0 -1 -1
0 01 O -1 -1 0 -1
0 00 -1 -1 -1 -1 O

These reflections generate a Coxeter group, the Dynkin diagram of which is depicted in
figure 1 [8].
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Figure 1. Dynkin diagram for the Coxeter group which generates all integral Lorentz
transformations.

Kac [2] has proved thatl;, S», S3, S4 generate all the integral Lorentz transformations that
keep invariant the upper half of the light cone. Note thigtS,, S; generate the full cubic or
octahedral group.

The generato§; can be used to factorize any integral Lorentz transformation that belongs
to the complete (orthochronous) Lorentz group. Let

a e f g
L = b N
C
d
be an integral matrix of determinant = +1, satisfying
L'eL =g g =diagl, -1, -1, -1 2

and alsa: > 1. From
a’?—b*—c?—d’=1
it follows that only one ob, ¢, d can be zero. Suppoge> 1, then we appl\sy, S», S3to L
from the left untilb, ¢, d become non-positive integers. To the resulting matrix we aggply
we get
a ¢ f g
d'
with @’ = 2a + b + ¢ +d. Obviously
(atb+c+d)a—b—c—d)=1—2bc—2bd —2cd <0
thereforea+b+c+d < Oor
2a+b+c+d=ad <a.
By iteration of the same algorithm we get

a>d >ad > -->a®>1.

The last inequality is a consequence of the fact thatnd S, belong to the complete
Lorentz group. Following this process we get an integral matrix with = 1 which is a
combination ofSy, S5, S3, giving all 48 elements of the cubic group on the lattice.

Therefore, a general integral Lorentz transformation of the complete Lorentz frcaup
be decomposed as

L= Pln Pg P:,l’S4 e S4Pf Pzg Psf S4{Sf55 S%f Jall permutations 3

whereP; = $15,535,51, P> = $2835,, P3 = S3 are matrices which change the sigrbot, d
ande, 8,y,8,¢,¢,1n,0,t...=0, 1.

In the continuous case the boosts characterize the quotient of the Lorentz group with
respect to the subgroup of rotations. These continuous boosts take the {e&dp, 0),
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stable under rotations, to any point of the unit hyperboloid in the forward light cone. In the
discrete casél, 0, 0, 0) is stable under the full cubic group acting on space coordinates. The
coset representatives of the integral Lorentz group with respect to the cubic subgroup are
obtained by taking in equation (3) the quotient with respect to all integral elements of the cubic
group denoted byS? Sg Sg Jall permutations  These coset representatives allow us to construct
an algorithm to obtain any vector of the unit hyperboloid in the forward light cone from
the vector(l, 0, 0, 0). Letting (a, b, ¢, d) be any vector with integral components satisfying
a’ —b?> — > —d?> = 1,(a > 1). First, we apply to this vector the parity operatdts P>
or P; defined in equation (3), in such a way that the componkntsd become non-positive
numbers. To the resulting vector we apply the oper§tobtaining a new vectaw’, b', ¢/, d'),
a?—b?—c¢?—d?% =1, witha’ = 2a+b+c+d < a. Following the same procedure
we obtain new integral vectors satisfying> a’ > a” > --- > a® > 1. In the last step
we obtain the vectol, 0, 0, 0) as required. Taking the product of the generators used in this
algorithm in inverse order we get the coset representative that takes the (e€dp, 0) to
the vector(a, b, ¢, d) and we call this coset representative the integral boost.

A realization of the general element of the proper Lorentz group can be obtained through
the Cayley transform

L=1-X)1+x)?
whereX must satisfyXTg + g¢X = 0. The general expression faris

0 r s t

_|r O n —p
X = s —n 0 ¢
t p —q O
withn, p, g, r, s, t arbitrary real numbers (see [3] for the corresponding explicit expression of

L)

A particular case of integral Lorentz transformations are integral Lorentz transformations
without rotations. These can be obtained with the help of Cayley parameters [3] making
n =p =gq = 0andm,r, s, t integers. We can have the following cases:

(i) m?—r>—s2—-12=1

2m2—1 2mr 2ms 2mt
2mr 2r2+1 2rs 2rt

L= 2ms 2rs 252+1 2st )
2mt 2rt 25t 212+1
(i) m>—r>—s2—1>=2
m2—1 mr ms mt
mr r2+1 rs rt
L= ms rs  s2+1 st ©)
mt rt st ?+1
(i) m?—r?2—52—12=-1
—2m?>—1  2mr 2ms 2mt
2mr —2r2+1 —2rs —2rt
L= 2ms —2rs  —2s%+1  —2st 6)

2mt —2rt —2st  —2*+1
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(iv) m> —r2 —s? —t>°= -2
—_m?—-1 mr ms mt
2
mr —rc+1  —rs —rt
L= 7
ms —rs —s2+1 —st )
mt —rt —st —?2+1

The solutions of the diophantine equations in the four cases are obtained by application
of all the Coxeter reflections as given in equation (3) to the vedtds, O, 0) in case (i), to the
vector(2, 1, 1, 0) in case (ii), to the vecta(O, 1, 0, 0) in case (iii) and to the vectap, 1, 1, 0)
and(1, 1, 1, 1) incase (iv). SeeKac[2, p 70]. The four cases correspond to the integral Lorentz
transformations given by Schild [1, p 42] restricted to the pure Lorentz transformations without
rotations.

Equations (4)—(7) can also be considered as particular cases of integral boost, that take
the vector(1, 0, 0, 0) to the vector defined by the first column of each of the four matrices. In
the continuous case Mgller [4] has given a general boost that takes the (@00, 0) to
any vector on the unit hyperboloid. If we want to have a general matrix that takes the vector
(1, 0,0, 0) to any integral vectotM, R, S, T) on the unit hyperboloid this is achieved by the
square root of the first matrix of equation (4)

M R S T
R? RS RT
R 1+
1+M 1+M 1+M
VL = RS 52 ST : (8)
S 1+
1+M 1+M 1+M
RT ST T2
1+
1+M 1+M 1+M

This matrix is the restriction of the general Lorentz transformation given by Mgller [4] to
the values
P g P g P2 D3

moc moc mocC mocC
satisfyingM? — R?> — §? — T? = 1.

In position space the spacetime coordinates of the latfjcare integer numbers. They
transform under integral Lorentz transformations into integral coordinates. The same is true
for the increments\x,,.

In momentum space the components of the four-momentum are not integer numbers but

they can be constructed with the help of integral coordinates, namely
CcAt AX 9
P = o (((cm)2 — (MDD ((cAn? - (Af)ZW) ' ©

If Ax, transformunder integral Lorentz transformations as a four-vegiawjll transform
also as a four-vector because the denominator in each component is Lorentz invariant.

In general, there is no constraint between the valves. However, if we impose the
condition (cAf)? — (A¥)? = 1 then the four-momentum can be considered an integral four
vector multiplied bymoc, moc(M, R, S, T), satisfying(M? — R? — §? — T?) = 1 with
M =cAt, R = Ax1, S = Axo, T = Axs.

Using the homomorphism between the grou®(3,1)and SL(2,C) we obtain the
representation of integral Lorentz transformations as 2D complex matrices. From knowledge
of Cayley parameters [5] for a general element of the proper Lorentz group, we read off the
matrix elements of the correspondiag:s SL(2, C)

o 1 (m—t+i(n—k) —p—r+i(q—s)> (10)

JA\p—r+i(g+s) m+r—i(n+ir)

VA

M =
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with
A:mz—rz—52—t2+m2+pz+qz—k2 mA = nt + ps +qr.
Forinstance we can calculate the 2D representation of the Coxeter refletiondgtiplied
by the parity operatoP (in order to get an element of the proper Lorentz group) identifying its

matrix elements with the Lorentz matrix given in terms of Cayley parameters. Easy calculations
give the unique solutions

a(PSy) = :I:% (19i _10_ i) (11)
a(PSy) = j:% (_'1 —1|> (12)
a(PSs) = + ((') fi> (13)
a(PSy) = j:% (_10_ i 12_i i) . (14)

From these matrices one can prove the expressions for the representation of the algebra
for the Coxeter reflections, namely

a(S;S;) = a(PS)a(PS;) i#j i,j=2123
a(PSHa(PS;) =-1 i=123
a(PSHa(PSs) = a(SiSs) i=123 (15)
The elementa(PS;),i = 1, 2, 3 generate the so-called octahedral binary or double group

[14] excluding the parity. Together wita(P S4) they generate part of a binary version of the
Coxeter group.
The integral Lorentz transformations without rotations as given in equations (4)—(7) have

2D representations taking= p = ¢ = » = 0 in equation (10) and the choices

i)y m?—r?—s?2—1>=1

(i) m>—r2 —s?>—12=2
(iiiy m?2 —r?—s2—12=-1
(iv) m> —r2 —s2 -2 = -2
in equations (4)—(7). In order to complete the picture we have to add the 2D representation of
the matrix+/L given in equation (8) which turns out to be

_ 1 M+1+T R—iS \ _
“(*/Z):"_m( R+iS M+1—T>_’" (16)
The(2x 2) matrix representation of the discrete veatt, R, S, T), M?— R?>—5°—T? =
1 can be obtained from the momentum in the rest system, O, 0) transformed by the
matrix (16), namely

1 0\ .+ (M+T R-iS
"(0 1)" _<R+iS M—T)' (17
3. Representations of the translation group on the lattice and Fourier transforms

In the continuous case the unitary irreducible representations of the translation group are
one-dimensional (1D) and are given by the function

D¥(x) = exp(i2m xk) x€R (18)
wherek is a continuous parameter that characterizes the representation.
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If we restrict the translations to a discrete set of paints j¢, j € Z, the representation
becomes
D*(j) = exp(i2rkje) (19)
wherek is still continuous. This representation satisfies orthogonality relations
1/25 —k . ks 1
f D (j)D"(j") dk = =4 (20)
—1/2¢ €
and completeness relations

[o¢] —x , 1
2 D)D) = Zotk =), (21)
J=—00
The parameter of the discrete translation gréup defined in the fundamental domain
—(1/2¢) < k < (1/2¢).
From this representation we construct tiee | Fourier transform on the lattice

Fky= ) exp2rikje)F(j) (22)
121/25 R

F(j):/ exp(—2rikje) F (k) dk. 23)
—1/2¢

If we generalize the discrete translation group to a (3+1)-dimensional cubic lattice
r: {xu = jusa nw=20,123, j}L €Z}

with scalar product

k-x=k"je=(k-je (24)
then the representations become
D*(j,) = exp2ri(k - j)e. (25)

These representations satisfy orthogonal relations, completeness relations and a Fourier
transform analogous to the 1D case.
We introduce the reciprocal group of discrete translations on the reciprocal Efttiog

1
rR: {bR =buZ by € 24}.

The irreducible representations of the reciprocal group of discrete translations can be
written

DS (bR = exp2 wi& - bR) —e/2<E,<¢/2 (26)
satisfying
e/2
/ D (bR DEBR) de = %8 o (27)
—&/2
3 D OMDE BF) = %6 — &), (28)
bRel'R

The representations of the translation group in(8e 1)-cubic lattice are invariant under
the reciprocal group

D*(j,) = D" () (29)
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therefore, the parameters of the representaticare restricted to the fundamental domain
1 b < 1
— << X .
2e =2
The same property applies to the Fourier transforig8im 1) dimensions
F(k) = F(k +bR) bR erR (30)

Now we combine the irreducible representations of the discrete translations g(8uijn
dimensions and the integral Lorentz transformations.
Given a periodic function ok-space

F(k) = F(k+b%) (31)
it can be written in terms of discrete waves
Fy =" exprilk- j)e)F(ju). (32)
Ju€l

From the action of the Lorentz group we have
UpF (k) = F(A™ ).
Then
UprF(k+b%) = F(A Y% + A~DR).
However, from the properties of the scalar product and using (32) we have
expri(ABR - j)e) = exp 2ri(BR - (A™HTj)e = exp 2ri(bR(A™H]* ") =1
for any integral Lorentz transformation. Finally
UpF(k+b%) = F(A™Y%) = U, F (k). (33)

Therefore, the periodicity of some function with respect to the reciprocal group is
conserved under integral Lorentz transformations.

Now we consider the 1D unitary irreducible representation of the cyclic group in 1D of
orderN

oni
D"(j) =exp="mj  mj=01.. N-1 (34)

wherej represents the space variable ant the label of the representation.
This representation satisfies periodic boundary conditions with respect fosir@ble
D"(j+N)=D"(j)
and also with respect to the label
D" (j) = D"(j)

and satisfies orthogonality relations
5 ZO D"(HD" (") = 8j (35)

and completeness relations

1 = , 1
— D"(YD™ (j) = =8 - 36
- ; (NP () == (36)
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From this representation we construdyge Il Fourier transform on the lattice
N-1

) 1 2
F(m) = 7= 5 :exp(lwﬂmj> F(j) 37)
j=0

for any periodic function of discrete variablég;j + N) = F(j). This is called, in literature,
the finite Fourier transform.

The representation of the cyclic group in a 1D lattice and the corresponding Fourier
transform can be generalized to 8+ 1)-dimensional cubic lattice

2n
D™ (j,) = exp N (m - ) (38)

with (m - j) = m* j, the bilinear form invariant under integral Lorentz transformations.
Because of the periodic boundary conditions the label of the representation of the cyclic
group on the lattice is constrained to the fundamental domain, namely

Dm(]u) = Dm(s;t +n;1_N) = Dm(éu)

where 0< &, < N,§, € Z,n, € Z.
Symbolically

D"(j)=D"(+j% = D"(§) (39)

where¢ belongs to the fundamental domain ajfdis any vector in the cubic lattice whose
components are multiples &, j° = {n,N}. The boundary conditions (39) are invariant
under integral Lorentz transformations. From the definition of the group action

Unf(x) = f(A™%)
we have for a periodic function, periodic with respect to the space variable
FE+i)=f©®
UaNE+]) = FIATE+ AT = FIATE) = (UsNHE) (40)
where we have used the property

2
eXp(IW ; AanNmM) =1

due to the integral character of the Lorentz transformations.

4. Dirac representation of the Lorentz group and covariant states

Let L («) be an element of the proper Lorentz group corresponding to the elemeSt (2, C)

and/, the parity operator. One writes the components of four-momentunias 2) matrix
p=plo, = pPoo + plo; (41)

whereosy = 1 ando; are the Pauli matrices.
The transformations gb under parity andd L (2, C) are

I : p— p' = pPoo — p'o; = (detp)(p)

o p— apa’

P @) e (42)
It follows

LL@)I Y= L((@")™). (43)
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The matrix(a*)~* gives another 2D representation of the Lorentz group non-equivalent
toa € SL(2,C). In order to enlarge the proper Lorentz group by space reflection we take
both representationsand(a*) .

Letwr = {I, I;} the space reflection group aade SL(2, C), then the semidirect product

SL2,C)®m

with the multiplication law
(o, ), ") = (o, ") ifmr =1 (44)
(@, m)(@, ") = (a(@) ™, 7r') if 7 =1, (45)

form a group.
This group has a four-dimensional (4D) representation, particular elements of which are

pan=(5 o) Ben=(27) (46)

Dee, I,)D(a, )D(e, 7Y = D((a™) 71, 1. (47)

In this representation we could now construints;) for the generators of the Coxeter
group. Using formulae (11)-(14) we get the 4D matrices

B(Si)z( 0 MPS”) i=123

that satisfy

a(PS;) 0

Sien_ 0 let(PS)]?
D(Sa) = (a(PS4) 0 )

D(S)HD(S;) = -1 i=1234
[D(S1)D(S2)]° = +1 [D(S2)D(S9)]* = +1 [D(S3)D(S9]* = +1.

With respect to this representation, a four-component spingr) in momentum space
transforms as follows

U, DY (p) = D(e, DY (L™ (@) p) (48)

Ue. I)¥(p) = De, I)Y (L p). (49)
Using a similarity transformation we obtain an equivalent representation

D(a, ) = MD(e, T)M ™t

1 oo CIQ)
M=— .
«/i(—‘fo 0

In this representation

with

B 1 a+(a+)_1, —a+(a+)_1
D(O(, I) = E <—0[ + (Ol+)_l, a+ (Ol+)_l ) (50)
De, I,) = (‘BO _?T()) . (51)

For this representation we can derive from equation (46) the unitarity relation
D*(a, m)D(e, I,)D(a, w) = D(e, Iy).

The new four-spinor
¥ (p) = My (p)



Representations of the discrete Lorentz group and Dirac wave equ&igi

transforms as

U(a, DY (p) = D(e, DY (L) p) (52)
Ule, INY(p) = D(e, [,)¥ (I, p) (53)

and has an invariant scalar product due to the unitary relation given earlier. We call this
representation the Dirac representation.

The Dirac wave equation can be considered as a consequence of the relativistic invariance
and irreducibility [10]. Under the restriction 1/ (2), the first and second pair of components
of the four-spinor transform according to spiyRlrepresentation. Irreducibility requires that
one of these pairs should be eliminated. In the present discrete case we must replace the
continuous grougU (2) by the binary octahedral group [14]. Fortunately the restriction of
SU (2) to this discrete subgroup is irreducible [11]. This allows us to follow the steps of the
continuous analysis [10]. In the rest system we want a projection operator that selects one
irreducible representation ¢fU (2) out of the Dirac representation. This is achieved in the
rest system by the projection operator

_ 1 _ oo 0
0= U+ ﬂ:(o _00). (54)

In order to get the projection operator in an arbitrary system we apgty 1) given by
equations (50) and (16). In the last equation if we identify= (Py/moc), R = (P1/moc),
S = (P2/moc), T = (P3/mqc), then

Q — Q(k) =Dk, NQD(k, I) = 3(I + W(k)) (55)
where
_ 1/t + (/(+/{)_1, —ktk + (K+K)_1
W(K) - E (K+K _ (K+K)_l, —K+K _ (K+K)—1 . (56)
Using the identities
+ N—1 1 + 1 5 j
(k'k)""=—0"p, kK'k = ——0"po—0’p; (57)
mocC mocC
we find
1 L
W) = —vy"py (58)
moc

wherey* are Dirac matrices with the realization

o0 0 ; 0 o/ ;
y0=<0 —00> yl:(—ol‘ 0) Vo=, v/ =-y.

Collecting these results we obtain the Dirac equation in momentum space
QY (p) = 31 + W)V (p) = ¥ (p)
or
(" pu —moch)y(p) = 0. (59)

(An equivalent method can be used applying to the projection operator the Foldy—Wouthuysen
transformation [9].)
We apply the operatar, p* +moc from the left to (59) and obtain the mass-shell condition

(p" py — mic®Y(p) = 0. (60)
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The Dirac equation is invariant under the group with eleménts) defined before. In
other words, ify(p) is a solution of the Dirac equation, soli¥«, 7)¥ (p). Puttingr = I,
then

U, DY (p) = D(e, DY(L ™ p)
D M) Q(k)D(a) = Q (k)
Q(ka)y (L™ p) = (L™ 'p).
Therefore
QU (e, DY (p) = Q) D (e, DY (L™ () p)
=D (. ) Q)Y (L™ () p)
= D(or, DY(L" Xa)p) = U, DY (p)
as required. For the space reflection
QL) (I p) = ¥ (I, p)
D~ Y(e, I,)Q()D(e, I) = Q(I,p)
Ule, I)¥(p) = D(e, I)¥ (I;p)
we get
QU (e, 1) (p) = Q) D(e, L)Y (I, p) = D(e, I,) Q) ¥ (I p)
= D(e, I)Y (I,p) = Ule, L)Y (p)

as required. Notice that, due to the relation betwg&&1(2) and the binary octahedral group
mentioned before, all properties of the Dirac representation in continuous momentum space
carry over to the discrete momentum space without modification.

5. Dirac and Klein—Gordon equations on the lattice

From the Dirac equation in momentum space (59) we can construct the wave equation in
position space with the help of the Fourier transform we introduced in section 3. We define
the following difference operators

Af(D=FG+D=fG)  Af()=3(fG+D+F(D) (61)

ViD= —-rG-D VIG) =3+ f(G—1) (62)
and the partial difference operators with respect to a function of several discrete variables

Avf(ju) = f(.]pt + auv) - f(]u)

Avf () = 34 G+ 8) + £ (i) (63)

and similarlyV, f (j,.) andV, f (j,.).
From these operators we construct

1 ~ 1 5
Bi==A, [1A 5=V [BRZ (64)
VFEL VFER
3 ~ ~
nt = 1_[ Ay n = 1_[ V. (65)
n=0 u=0

From the Fourier transform we can derive the wave equation in lattice space.
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5.1. Type | Fourier transform

The kernel of the transform satisfies
1 2 -
— A, exp2ri(k - j)e) =i—tan(wk,e) A, expri(k - j)e). (66)
& &

We could apply the Fourier transform to the Dirac equation in momentum space (59) and
would obtain the discrete wave equation. Instead we postulate a difference equation that in
the limit goes to the continuous differential equation, namely

("8} — mocn )W (j,) = O. (67)

The kernel of the Fourier transform (25) or ‘plane wave' is a particular solution of (67) if
it satisfies

2 .
(y”— tanwk, e — moc) nTexp2ri(k- j)e=0. (68)
€

Applying the operatoy#(2/¢) tanrk, e + moc from the left side to the last equation we
obtain

4
—z(tannk“e)(tannkﬂa) — mgc2 =0 (69)
€

which is the integrability condition for solution of the wave equation.
Now we multiply equation (68) by some arbitrary (periodic) functipfy,) of discrete
variables and sum for aji,.

We get

2 N

(y“— tanwk,e — moc> Yk, =0 (70)
&

where
. N-1
Viky) =Y W (on” expi2ek® j,e) (71)
Jn=0

is the Fourier transform af (j,,).
If we compare equation (70) with equation (59) both are identical if we restrict the
momentump,, to the discrete values

2 1 1+(1/2)i
pu = —tanmk,e ky, = n 2+ A/D1epy (72)
&

T 2mie 11— (1/2)iep,’

Instead of postulating the Dirac equation on the lattice (67) we can deduce itin a natural way
from the projection operator of the Dirac representation (59): we first identify the momentum
pu in this expression with the new variabtg as given in (72), then we apply the Fourier
transform of type | (23) and finally, using (66), obtain (67).

Applying to the wave equation the operatpt's,, +mocn~ from the left side we obtain
the discrete version of the Klein—-Gordon equation in the lattice space [6]

(8,8" —m3e*n n )Y (ju) =0 (73)

a particular solution of which is again the ‘plane wave’ (25) provided the integrability condition
(69) is satisfied.
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5.2. Type Il Fourier transform
The kernel of this Fourier transform satisfies
1 27 2 Vg ~ 2
EAMeXpW(] m) = |gtan(ﬁm) Al‘- eXpW(] m) (74)

We postulate a difference equation on the lattice space the limit of which goes to the
continuous wave equation

(iy"8} — mocn ) (ji) = 0. (75)

The kernel of the type Il Fourier transforms (38) is a particular solution or ‘plane wave’
of this equation (75) if it satisfies

2 27i
(y”g tan%mu — moc> n* exp%l(j -m) =0. (76)
Applying the operatoy#(2/¢) tan(zz/N)m,, + moc from the left side we get
4 T T 22
s (tanﬁmu) (tanﬁmu> —mge=0 (77)

which is the integrability condition for the ‘plane wave solution’ of the wave equation on the
lattice.

Now we multiply equation (71) by some arbitrary (periodic) functip(y,) of discrete
variables and sum for aji,. We get

(y“§ tan%mu — moc) 1/A/(k,1) =0 (78)
where
7 al . + 27[ .
Vi) = 3 VG exp i—em' j, (79)
Jjn=0

is the Fourier transform af (j,,).

Both equation (59) and equation (78) are identical if we restrict the momepjumthe

discrete values
s N 1+(1/2)ie
pﬂzgtanﬁmu mﬂzﬁ % mM=0,l,...,N—1. (80)

From equation (75) we could derive the Klein—~Gordon equation on the lattice space as in
equation (73) with the integrability conditions (69) as before.

As in the case of Fourier transforms of type | we can deduce again the wave equation on
the lattice in a natural manner from the projection operator (59): we identify the momentum
p, With the new variable given by (80), use the Fourier transform (37) of type Il, together with
(74) and obtain (75).

6. Induced representations of the discrete Poincé&r groups

Let P! = Tu x, SO(3,1) be the Poinca group restricted to the integral Lorentz
transformations and discrete translations on the lattice with group composition

(a, N (@', N) = (a+nd, AN). (81)
In order to construct irreducible representations we follow the standard method [13].

(1) Choose a unitary irreducible representatioi R), D’Z (a), of the translation grouf;.
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(2) Define the little groufH € SO(3, 1) by the stability condition

h e H: DF(hla) = D¥(a). (82)
(3) Choose &/I R D* of the little groupH and construct for the groufy, x; H theUIR

Db (a, h) = D*(a) ® D*(h). (83)
(4) Choose coset generataersf T, x; H in P! constructed from the group action

(a, N =c(a,h). (84)
(5) It follows that the induced representations is

Dk*(@, A) = D (a, ms((c) 2@, Rye. (a, b)) (85)
and this is a/I R of PI.

We recall the construction of the massivé R for the continuous case. ifis any vector
inside the forward light cone, one can shiftit on the orbit by a continuous Lorentz transformation

to the form]?: moc(l, 0, 0, 0), with the stability groupd = SO(3). In (2 x 2) matrix form
this stability group become$0 (2).

For the discrete Poincaigroup, we may choosfefrom the intersection of the Brillouin
zone with the forward light cone. We can shift it on the orbit only by discrete Lorentz

transformations. Certainly we can choé}semoc(l, 0, 0, 0) within the Brillouin zone. Then,
the discrete stability group is the cubic group an@x 2) matrix form it becomes the binary
cubic group. In both cases the representations subduced from the continuous to the discrete
little groups remain irreducible.
For the coset representative= (0, A) we can choose the integral Lorentz transformations

A = L(k) that takelz into an arbitrary integral vector of the unit hyperboloid. These
transformations were defined in section 2 as integral boosts. The Dirac delta function in
(85) is zero unless

(@, h) = (0, L™ (K"))(@, A)(O, L(k)) = (L™ (K)a, L (k)AL (k).
Substituting into equation (85) witt ¢/ — K, k¥’ and using (82) we get
D,’E:,‘j @, A = D’z(L‘l(k/)d)D"‘(L‘l(k/)fo(k)). (86)
The spinor representation of the second factor is given with respect to the element
L=Y(K")AL(k) that belongs to the little group§U (2), or SO (3, R), respectively. These

representations ofU(2) corresponding to spin/2 or spin-1 state are irreducible when
restricted to the (binary) cubic group [11]. The first factor can be written

DHLYK)a) = D¥ (@) (87)

wherek’ = (L71(k')T l(é are all the points that defined tti&l R of the translation group and
belong to the orbit on the dual translation group. This orbit is discrete in our analysis.

We apply the analysis given in [13] for the semidirect product of the discrete translation
group and a point group on the lattice. The dual group of the translation group is given by
all the points from the Brillouin zone. We wish to characterize the discrete orbit of the point
group by a function on the dual space. We formulate five conditions for these constraints:

(1) they should vanish on the orbit points;
(2) they should admit a periodic extension on thepace;
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(3) the constraints must be Lorentz invariant;

(4) the constraints should vanish only on the points of the orbit;

(5) when the lattice spacing goes to zero, the difference equations in position space should go
to the continuous wave equation in Minkowski space.

If we require only conditions (1)—(4) the polynomialg‘k, —k?) = 0 vanish on, and only
on, the discrete points of the orbit and the irreducible representation could be characterized by
the functions (see [15, p 192])

FH) - (ke — k2) f* (k) = 0. (88)

Nevertheless the difference equation (73) we constructed in section 5, with the kernel of
Fourier transforms of type | and I, does not lead to this constraint. We take a new approach. We
choose the constraints we derived in the Dirac representation in momentum space equation (60)
for the continuous case

(" pp = mge®)¥ (p) = 0. (89)

If we identify p, = (2/¢) tanmrk, e, with k in the Brillouin zone and the lattice spacing
and use the Fourier transform of type | we obtain the difference equation (73).

If we identify p,, = (2/¢) tan(w/N)m,, in (89) and use the Fourier transform of type Il we
obtain again the difference equation (73), the continuous limit of which leads to the continuous
Klein—Gordon equation.

The constraints (69) are periodic with respect to khespace in the type | and the
constraints (77) are periodic with respect to thyg-space in the type II.

Nevertheless when integral Lorentz transformations are applied to the components of the
k, orm, variables the new,, do not satisfy the constraint equations and at the same time the
constraints vanish at points not on the orbit. Therefore, conditions (3) and (4) are violated,
although they can be recovered in the asymptotic limit whes 0

(K'ky —k*) Y (k,) =0 typel (90)
orinthe limite - 0, Ne — 27
(m"my, — Dy(@m,) =0 type Il. (92)

The corresponding representation becomes irreducible and invariant.

In summary, the constraints given by (88) satisfy conditions (1), (2) and (4) but they do
not lead to the difference equation (73) via the finite Fourier transform.

The constraints given by (89) satisfy conditions (1) and (2) and they lead to the difference
equation (73), although they do not satisfy conditions (3) and (4).

The constraints given by equations (90) and (91) are equivalent to (88) and they lead to
the field equation of continuous type, because they are constructed by the 4@, which
also implies that we recover the continuous wave equation.

In conclusion, the orbit condition for the irreducible representation of the P@mgaup
does not satisfy simultaneously all the conditions for the constraints.

This situation is equivalent to the problem of the fermion doubling in lattice gauge theories.
Each model does not satisfy all the conditions for the Hamiltonian although they have the
advantage of avoiding the infinities appearing in the fields for the continuous case.
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Note added in proof One of the referees has brought to our attention a paper by 't Hooft [16] where a difference
equation is proposed in discrete spacetime invariant under Lorentz transformations. Nevertheless it is not possible to
compare it with our model because that paper deals with curved spacetime (a c§fpaéimanifold). Besides this

the position operators are defined on momentum space and they are compact, therefore they have discrete eigenvalues
labelled by the total and third component of the angular momentum.
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